
AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 1/27

Created by Atalan – accede@atalan.ca February 2014

Accessibility guidelines

for rich interfaces and JavaScript

 (Use cases to comply with France’s accessibility guidelines)

Date Version Author Status / comments

07 February 2014 1.0 Atalan English version.

In partnership with:

Air Liquide – Atos – BNP Paribas – Capgemini – EDF – Generali – SFR – SNCF – Société Générale –

SPIE

Observers:

AbilityNet – Agence Entreprises & Handicap – AnySurfer (Belgium) – Association des Paralysés de

France (APF) – Association Valentin Haüy (AVH) – CIGREF – Design For All Foundation (Spain) –

ESSEC – Handirect – Hanploi – Sciences Po – Télécom ParisTech

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 2/27

Created by Atalan – accede@atalan.ca February 2014

Acknowledgements

Special thanks to our AcceDe Web partners for their input and commitment:

Thanks to their support, participation in the working groups, proofreading of documents, and testing of

manuals, the partner companies have provided valuable input to the Accede Web project. This has

made it possible to create manuals that successfully meet the needs of the different stakeholders of a

web project. These companies are also contributing to making the web more accessible by authorizing

the free distribution of this content.

We would also like to thank the following observers of the AcceDe Web project whose actions raise

awareness of the AcceDe Web manuals and aid their distribution: AbilityNet (UK), Agence Entreprises

& Handicap, AnySurfer (Belgium), Association des Paralysés de France, Association Valentin Haüys,

CIGREF, Design for All foundation (Spain), ESSEC, Handirect, Hanploi, Sciences Po and Télécom

ParisTech.

We thank all the members of the review committees for the quality and relevance of their comments:

 English version: Robin Christopherson (UK - AbilityNet), Ramon Corominas (Spain -

Technosite), Deborah Edwards-Onoro (USA - Lireo Design), Thomas Frandzen (Denmark -

Agency for Digitisation, Ministry of Finance), Char James-Tanny, (USA - a11yBos), Matt May

(USA – Adobe), Sophie Schuermans (Belgium – Anysurfer), Jared Smith (USA - WebAIM),

Christophe Strobbe (Germany), Gijs Veyfeyken (Belgium – Anysurfer)

 French version: Benjamin Ach (accessibility expert), Vincent Aniort (APF), Jean-Baptiste

Audras (University of Grenoble), Claire Bizingre (accessibility consultant), Victor Brito

(accessibility consultant), Anna Castilla (Provaltis), Ève Demazière (Sciences Po), Nicolas

Fortin (French Ministry of Media and Culture), Marc-Étienne Vargenau (Alcatel-Lucent) and

Éric Vidal (Fédération des aveugles de France), as well as all the teams of our partner

companies.

Finally, we would like to thank Laurent Bracquart and Johan Ramon, Christophe Pineau and Marion

Santelli of Atalan for their dedication and commitment to this initiative.

Sébastien Delorme, Sylvie Goldfain,

Atalan

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 3/27

Created by Atalan – accede@atalan.ca February 2014

Contents

Introduction .. 5

Context and objectives .. 5
Who should read this user guide, and how should you use it? ... 5
License agreement .. 6
Contact .. 6
Credits ... 6

1. General recommendations for rich interfaces and JavaScript ... 7

1.1. Make a distinction between buttons and links .. 7
1.2. Implement alternatives to JavaScript ... 7
1.3. Implement alternatives to Flash .. 7
1.4. Allow scripts to be controlled using both the mouse and the keyboard 8
1.5. Allow the user to pause automatic animations ... 9

2. Use cases .. 10

2.1. Navigation .. 10
2.1.1. Drop-down menus ... 10

Purpose .. 10
Basic HTML code ... 10
Behaviour with JavaScript .. 11
Demonstration .. 11

2.1.2. Accordions (fold/unfold) ... 11
Purpose .. 11
Basic HTML code ... 11
Behaviour with JavaScript .. 12
Demonstration .. 12

2.1.3. Tabs ... 13
Purpose .. 13
Basic HTML code ... 13
Behaviour with JavaScript .. 13
Demonstration .. 14

2.1.4. Slideshows ... 14
Purpose .. 14
Basic HTML code ... 14
Behaviour with JavaScript for carousels with automatic scrolling .. 15
Behaviour with JavaScript for carousels with manual scrolling .. 16

2.2. Display of information .. 17
2.2.1. Pop-in windows .. 17

Purpose .. 17
Basic HTML code ... 17
JavaScript behaviour .. 17

2.2.2. Tooltips .. 17
Purpose .. 17
Basic HTML code ... 18
Behaviour with JavaScript .. 18
Demonstration .. 18

2.3. Forms ... 19
2.3.1. Simulated checkboxes ... 19

Purpose .. 19

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 4/27

Created by Atalan – accede@atalan.ca February 2014

Basic HTML code ... 19
Behaviour with JavaScript .. 19
Demonstration .. 20

2.3.2. Simulated radio buttons ... 21
Purpose .. 21
Basic HTML code ... 21
Behaviour with JavaScript .. 21
Demonstration .. 23

2.3.3. Simulated drop-down lists .. 23
Purpose .. 23
Basic HTML code ... 23
Behaviour with JavaScript .. 23
Demonstration .. 24

2.3.4. Sliders .. 25
Purpose .. 25
Basic HTML code ... 25
Behaviour with JavaScript .. 25
Demonstration .. 27

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 5/27

Created by Atalan – accede@atalan.ca February 2014

Introduction

Context and objectives

This manual provides both:

 The general accessibility guidelines to consider during the development of rich interfaces,

whatever the target device for displaying the content (computer, mobile phone, etc.).

 Practical help on how to include accessibility in some standard use cases (drop-down menus,

tabs, etc.) in order to comply with France’s accessibility guidelines (which do not consider

ARIA yet).

This manual is part of a set of four complementary manuals that can be downloaded from the

http://www.accede-web.com/en/ website:

1. Accessibility guidelines for graphic design.

2. Accessibility guidelines for HTML and CSS.

3. Accessibility guidelines for rich interfaces and JavaScript (this manual).

4. Accessibility guidelines for editors (template).

Who should read this user guide, and how should you use

it?

This document should be given to stakeholders and/or service providers who create the technical

specifications and the HTML/CSS templates, and who are responsible for the different technical

developments of rich interfaces. It should be used in addition to the technical specifications of a

project, and the Accessibility guidelines for HTML and CSS manual. The recommendations may be

supplemented with others, or left out, according to the circumstances—the project manager is often

the most appropriate person for this task.

The recommendations should be considered for the HTML/CSS, JavaScript, and Flash integration

phases. Some recommendations apply when pages are produced dynamically from templates that are

integrated in a content management system (CMS).

There are some annotations that complete the document and should be read to understand each

recommendation:

 Note: notes help complete the recommendations by providing additional details for

specific situations.

 Warning: warnings highlight specific points that require attention or traps to avoid in order

to guarantee good accessibility.

 Tip: Tips are not directly linked to accessibility, but you can improve the general quality of

the interfaces by implementing them, or facilitate the integration of accessibility in the

subsequent steps in the project. Note that the recommendations in this project, although

 Note

The solutions provided in this manual are not unique—each is often just one of many possible

accessibility solutions. With the required knowledge, most of the solutions described in the use cases can

be adapted to the required context.

http://www.accede-web.com/en/

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 6/27

Created by Atalan – accede@atalan.ca February 2014

aimed at accessibility, are often good practice for ensuring ease of use, and improved user

experience, performance, and referencing.

 HTML5: The HTML5 insets provide additional details or warnings to the recommendations

in the light of the developments proposed in the new HTML specification.

License agreement

This document is subject to the terms of the Creative Commons BY 3.0
1
 license.

You are free to:

 copy, distribute and distribute the work to the public,

 change this work,

Under the following conditions:

 Mention of the authorship if the document is modified:

You must include the Atalan and AcceDe Web logos and references, indicate that the

document has been modified, and add a link to the original work at http://www.accede-

web.com/en/.

You must not in any circumstances cite the name of the original author in a way that suggests

that he or she endorses you or supports your use of the work without its express agreement.

You must not in any circumstances cite the name of partner companies (Air Liquide, Atos,

BNP Paribas, Capgemini, EDF, Generali, SFR, SNCF, Société Générale and SPIE), or the

organizations which have supported this initiative (AbilityNet, Agence Entreprises & Handicap,

AnySurfer, Association des Paralysés de France (APF), CIGREF, Design For All Foundation,

ESSEC, Handirect, Hanploi, Sciences Po and Télécom ParisTech) without their express

agreement.

The Atalan and AcceDe Web logos and trademarks are registered and are the exclusive property of

Atalan. The logos and trademarks of partner companies are the exclusive property of Air Liquide,

Atos, BNP Paribas, Capgemini, EDF, Generali, SFR, SNCF, Société Générale and SPIE.

Contact

Please send any comments about this document to Atalan, the coordinator of the AcceDe Web

project, at the following email address: accede@atalan.ca.

You can also find more information about the AcceDe Web project procedural manuals on the website

http://www.accede-web.com/en/ or follow our twitter account @societe_atalan.

Credits

The icons used in the AcceDe Web guidelines are from a set of 24x24 Free Application Icons

(http://www.small-icons.com/packs/24x24-free-application-icons.htm).

1
 For more information on the Creative Commons BY 3.0 license, see http://creativecommons.org/licenses/by/3.0/fr/.

http://www.accede-web.com/en/
http://www.accede-web.com/en/
mailto:accede@atalan.ca
http://www.accede-web.com/en/
http://twitter.com/societe_atalan
http://www.small-icons.com/packs/24x24-free-application-icons.htm
http://creativecommons.org/licenses/by/3.0/fr/

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 7/27

Created by Atalan – accede@atalan.ca February 2014

1. General recommendations for rich interfaces and JavaScript

1.1. Make a distinction between buttons and links

To help users understand rich interfaces more easily, buttons should have a different function to links.

 Buttons <button>/<input> are used to perform actions. They are used to submit information,

display the following or previous element in a carousel, close a pop-in, etc.

 The <a> links allow the user to navigate. They are used to navigate to another page, or to a

specific point on the current page by pointing to an anchor.

1.2. Implement alternatives to JavaScript

Whenever content or functionalities are produced using JavaScript, remember to put an alternative

into place. The alternative should allow the user to access similar content or functionalities if

JavaScript is not activated on the user workstation.

The table below lists some examples of standard JavaScript uses, with a suggestion of an alternative

when JavaScript is deactivated.

When JavaScript is enabled When JavaScript is disabled

Error management of a form is performed on the

client side.

Error management of a form is performed on the

server side.

An accordion system allows for the dynamic

hiding and display of specific content.

All content is shown on the page, with one

section following the other.

An interactive map indicates the physical address

of an organisation.

The postal address of the organisation is

indicated in text format.

1.3. Implement alternatives to Flash

Each time that content or functionalities are produced with Flash, remember to put an alternative into

place. The alternative should allow the user to access similar content or functionalities, in the event

that a Flash reader is either not installed or activated on the user workstation.

The table below shows some standard uses of Flash, with alternatives for when the Flash reader is

either deactivated or not installed.

When Flash is enabled When Flash is disabled

A Flash video player can be used to show video

content.

An HTML5 video player can be used to show

video content, or a link to download the content

can be supplied for each video.

A chronological frieze in Flash recounts the

history of a company.
The history of a company is shown in HTML

content.

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 8/27

Created by Atalan – accede@atalan.ca February 2014

1.4. Allow scripts to be controlled using both the mouse

and the keyboard

Whenever a script is controlled by the mouse, it must also be possible to control it with the keyboard,

and conversely.

In other words, each time the mouse can be used to control a script, using an element such as a link

or button, the user must be able to:

 Reach the script using the keyboard.

 Control the script using the keyboard once the focus is set on the corresponding element.

 Note

For accessibility, it is considered good practice to provide a link to the alternative version near the Flash

animation. The idea is to allow users to access the alternative version, even if Flash is available. For a

chronological frieze, for example, you could provide a link “Alternative version of chronological frieze”.

 Warning

If JavaScript is used to load a Flash animation, make sure the animation is loaded properly when

JavaScript is not activated. It is possible for a Flash reader to be installed even though JavaScript is

deactivated.

 Warning

Whenever possible, use generic event listeners methods rather than specific ones for a keyboard button.

For example, use onfocus/onblur rather than onkeydown.

This is important because keyboard shortcuts are not always the same on different systems and

browsers. For example, in the Opera browser, the shift key, together with the arrow keys, allows the

user to navigate from one link to another. However, most other browsers use the Tab key for this

shortcut.

 Note

It is very important to avoid keyboard traps. Keyboard traps block a user who navigates with the

keyboard, because they prevent interaction with specific zones on the page.

Keyboard traps arise when a user is blocked on a page when navigating with a keyboard:

 Either because an element prevents the user from moving the focus to the previous or next

interactive element.

 Or because an element does not let the user move on from the current focus, once it is applied

to an element.

Each time that scripts are used on a page, make sure they do not contain keyboard traps by running a

simple test on the interface with the keyboard.

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 9/27

Created by Atalan – accede@atalan.ca February 2014

1.5. Allow the user to pause automatic animations

Whenever elements on a page are likely to move, implement a system to control the movement.

Including play and pause buttons is sufficient. You could include both actions in the same button,

which is updated dynamically.

Some standard cases of moving content:

 A carousel of news articles.

 An animated advertisement.

 A video.

 Etc.

 Warning

Whatever the visual position of this button on the page, it must always be placed before the animated

elements in the DOM. With a multimedia player, make sure this button is the first focusable element of the

player.

 Note

You don’t need a pause button on progress bars for moving elements which stop automatically in five

seconds or less.

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 10/27

Created by Atalan – accede@atalan.ca February 2014

2. Use cases

2.1. Navigation

2.1.1. Drop-down menus

Purpose

Drop-down menus are dynamic menus which show only the first level items by default, but which show

other, corresponding, drop-down panels when you move the cursor over, or set the focus on, the first

level items.

Basic HTML code

An example of the basic HTML code for a drop-down menu is shown below. This code needs to be

modified according to the context, especially with respect to the content of the drop-down menus.

<ul id="menu">

 First level link 1

 Second level link 1

 Second level link 2

 Second level link 3

 First level link 2

 Second level link 4

 Second level link 5

 Second level link 6

 First level link 3

 Warning

If the items on the first level are not links, and their only function is to display or conceal the panels, then

the drop-down menu should be considered as an accordion menu.

In this situation, it may be a good idea to modify the script for a standard accordion, so that the content of

the panels is also displayed when you move the mouse pointer over the item.

 Tip

If there are a great deal of interactive elements on the drop-down panels (links, form elements, etc.), it is

a good accessibility practice to give priority to the accordion behaviour.

Displaying the drop-down panels only when the user interacts with the corresponding first level item

makes it possible to optimise the page navigation with the keyboard, by limiting the number of elements

that can receive the focus, by default.

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 11/27

Created by Atalan – accede@atalan.ca February 2014

 Second level link 7

 Second level link 8

 Second level link 9

Without JavaScript, all the items of the menu (first level items and panels) are displayed.

Behaviour with JavaScript

JavaScript must manage the following points:

1. When the script is loaded, the panels are positioned outside the screen using the CSS

property position: absolute; and left: -999999px;.

2. Then:

 When a first level item receives the focus, or when the mouse pointer is over this

element, the corresponding panel is displayed on the screen.

 When the first level item loses the focus, or when the mouse pointer is no longer

over this item, the corresponding panel is moved outside the screen.

Demonstration

A demonstration is available in the online version of this recommendation at: http://wiki.accede-

web.com/en/notices/interfaces-riches-javascript/.

2.1.2. Accordions (fold/unfold)

Purpose

Accordions are dynamic modules that are used to optimise page content display in a small space.

They use a system of “fold/unfold”, controlled by the user, often by clicking on a title or a link above

the content block.

Basic HTML code

An example of the basic HTML code for an accordion with panels concealed by default is shown

below. This code may be modified according to the context, notably with respect to the different

heading levels.

<h1>Heading of the first panel</h1>

<div id="panel-1">

 <p>Content of the first panel</p>

</div>

<h1>Heading of the second panel</h1>

<div id="panel-2">

 <p>Content of the second panel</p>

</div>

<h1>Heading of the third panel</h1>

<div id="panel-3">

 <p>Content of the third panel</p>

</div>

Without JavaScript, all of the system is expanded (displayed).

http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/
http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 12/27

Created by Atalan – accede@atalan.ca February 2014

Behaviour with JavaScript

The scripts are then added to the basic HTML code to handle the following points:

 The panel headings include links that make it possible to fold or unfold the panels.

 The panels are hidden by default using the property display: none in the CSS.

 By using the mouse or the keyboard to execute a link-heading, you can display or hide the

corresponding panel (display: none to hide it and display: block to display it).

 The aria-expanded="false" attribute is applied by default on the link-heading. The value of

this attribute then changes dynamically to true when the corresponding content is displayed

and false otherwise.

 The aria-controls attribute is applied to the link-heading. The value of this attribute is

retrieved from the ID attribute of the corresponding panel.

The resulting code with JavaScript is as follows:

<h1>First

panel heading</h1>

<div id="panel-1">

 <p>First panel content (hidden)</p>

</div>

<h1>Second

panel heading</h1>

<div id="panel-2">

 <p>Second panel content (displayed)</p>

</div>

<h1><a href="#panel-3" aria-expanded="false" aria-controls="panneau-

3">Third panel heading</h1>

<div id="panel-3">

 <p>Third panel content (hidden)</p>

</div>

Demonstration

A demonstration is available in the online version of this recommendation at: http://wiki.accede-

web.com/en/notices/interfaces-riches-javascript/.

 Note

Even though it is not so recommended, it is possible, without JavaScript, to keep the links inside the

headings. In this case, they are links that point to the corresponding anchors:

<h1>Heading of the first panel</h1>

<div id="panel-1">

 <p>Content of the first panel </p>

</div>

http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/
http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 13/27

Created by Atalan – accede@atalan.ca February 2014

2.1.3. Tabs

Purpose

Tabs are dynamic modules that enable you to optimize the display of page content in a small space.

They are usually shown in the form of a list of side-by-side links that display the corresponding content

of the selected tab. You can only activate one tab at a time.

Basic HTML code

The HTML code includes internal links that point to the corresponding panels.

 First tab

 Second tab

 Third tab

<div id="panel-01">

 Content of the first panel.

</div>

<div id="panel-02">

 Content of the second panel.

</div>

<div id="panel-03">

 Content of the third panel.

</div>

Without JavaScript, all the panels are displayed, and the tabs are used as links to directly access the

content of the corresponding panel.

Behaviour with JavaScript

The scripts are then added to the basic HTML code to handle the following points:

 With the exception of the active panel, the panels are hidden by default using the display:

none attribute in the CSS.

 The role="tabpanel" attribute value is applied to each panel.

 The role="tablist" attribute value is applied to the tab container.

 The role="tab" attribute value is applied to each of the tabs.

 The aria-controls attribute is applied to each of the tabs. The value of this attribute is

retrieved from the id attribute of the corresponding panel.

 The aria-selected="false" attribute value is applied to each tab, except for the active tab

that has the attribute value aria-selected="true". The value of this attribute then changes

dynamically to true when the corresponding content is displayed and false otherwise.

 The tag is added systematically around the content of the active tab. This tag is

deleted as soon as the tab is no longer active.

 The tabindex=“0” attribute is applied to each of the panels so that they can receive the

focus. As soon as a tab is selected, the focus must be positioned dynamically on the

corresponding panel.

The resulting code with JavaScript is as follows:

<ul role="tablist">

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 14/27

Created by Atalan – accede@atalan.ca February 2014

 <li role="tab" aria-selected="true" aria-controls="panel-01">First tab

 <li role="tab" aria-selected="false" aria-controls="panel-02">Second tab

 <li role="tab" aria-selected="false" aria-controls="panel-03">Third tab

<div id="panel-01" role="tabpanel" tabindex="0">

 Content of the first panel.

</div>

<div id="panel-02" role="tabpanel" tabindex="0">

 Content of the second panel.

</div>

<div id="panel-03" role="tabpanel" tabindex="0">

 Content of the third panel.

</div>

Demonstration

A demonstration is available in the online version of this recommendation at http://wiki.accede-

web.com/en/notices/interfaces-riches-javascript/.

2.1.4. Slideshows

Purpose

A carousel or slideshow is a scrollable content panel that fits into a small space.

They generally include a system of pagination, navigation arrows, and/or a system for pausing or

advancing the content in the case of a carousel with automatic scrolling.

With regards to accessibility, two types of carousel can be distinguished:

1. Carousels with automatic scrolling.

2. Carousels with manual scrolling.

Basic HTML code

An example of the basic HTML code for both types of carousel is shown below. This code should be

modified according to the context, especially with respect to the content of the panels.

<ul id="carousel">

 <li class="panel" id="panel-1">

 Content of panel 1.

 <li class="panel" id="panel-2">

 Content of panel 2.

 <li class="panel" id="panel-3">

 Content of panel 3.

Without JavaScript, all the panels are displayed.

http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/
http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 15/27

Created by Atalan – accede@atalan.ca February 2014

Behaviour with JavaScript for carousels with automatic scrolling

The scripts must handle the following points:

 An element for pausing or restarting the movement of the carousel is included in the DOM,

before the content of the panels.

 The title of this element changes dynamically according to whether the carousel is paused or

scrolling.

 The panels that are not displayed on the screen are moved outside the screen with the CSS

position: absolute; and left: -999999px;. They are not hidden with display: none;.

 Then, if the panels contain interactive elements, a script handles the navigation with the

keyboard:

 Only the content of the active panel is tabulable. To obtain this, apply a

tabindex="0", or delete the tabindex attribute on all the interactive elements

contained in the panel (links, buttons, form fields, etc.).

 To prevent the focus being set on the content of panels that are not displayed on

the screen, a tabindex="-1" is applied on all the interactive elements contained in

these panels.

 This behaviour is applied each time that a new panel is displayed.

The resulting code with JavaScript is as follows:

<button id="pause-play">Pause</button>

<ul id="carousel">

 <li class="panel" id="panel-1">

 Content of panel 1 (hidden) with a

link.

 <li class="active-panel panel" id="panel-2">

 Content of panel 2 with a link.

 <li class="panel" id="panel-3">

 Content of panel 3 (hidden) with <button tabindex="-1">a button

</button>.

 Note

The recommendations to follow when writing the JavaScript code will vary according to whether you

require an automatic scrolling carousel or not.

 Note

This code should be modified according to the context, especially if the pause button is an image. You

would then need a code similar to this:

<button id="pause-play"></button>

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 16/27

Created by Atalan – accede@atalan.ca February 2014

Behaviour with JavaScript for carousels with manual scrolling

The scripts must handle the following points:

 An element for displaying the previous panel is included in the DOM, before the content of the

panels.

 An element for displaying the following panel is included in the DOM, after the content of the

panels.

 The panels that are not displayed on the screen are hidden using CSS with the property

display: none;.

The resulting code in JavaScript is as follows:

<button id="previous">Previous</button>

<ul id="carousel">

 <li class="panel" id="panel-1">

 Content of panel 1 (hidden).

 <li class="active-panel panel" id="panel-2">

 Content of panel 2.

 <li class="panel" id="panel-3">

 Content of panel 3 (hidden).

<button id="next">Next</button>

 Warning

The pausing system (in this case, the “Play/Pause” button) must always be inserted in the DOM before

the elements it interacts with, whatever its position on the screen.

 Note

This code should be modified according to the context, especially if the “Previous” and “Next” buttons

are images. In this case you need a code similar to the one below:

<button id="previous"><img src="images/previous.png" alt="Previous"

/></button>

[...]

<button id="next"></button>

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 17/27

Created by Atalan – accede@atalan.ca February 2014

2.2. Display of information

2.2.1. Pop-in windows

Purpose

Pop-in windows appear directly on the inside of the current browser window, above the web page or

the application. They are different from pop-up and pop-under windows that open new external

windows, respectively in front of and behind the current window.

Pop-in windows are modal windows, in that they take control of the current page, for as long as they

are displayed on the screen. To continue navigating, the user must therefore take some action in the

pop-in.

Basic HTML code

Pop-in content can be included in a page using either of the two methods below (with the same result):

1. Either the content is present by default in the DOM, but hidden, before being displayed in the

pop-in by a user action. In this case, make sure the reading order is logical when CSS is

deactivated (see recommendation “1.2.1 Write the HTML source code by following the logical

reading order” in the Accessibility guidelines for HTML and CSS).

2. Or the content is absent by default from the DOM, before being dynamically loaded in the pop-

in by a user action. In this case, make sure that the content is deleted from the DOM when the

pop-in is closed.

According to the choice of integration method, the behaviour will be different when JavaScript is not

activated:

1. In the first case, the element that triggered the pop-in must point to the content of the pop-in,

present by default in the DOM.

2. In the second case, the element that triggers the display of the pop-in must point to another

page where the user can access the content of the pop-in.

JavaScript behaviour

When a pop-in is displayed on the screen:

1. The focus must be set on the container of the pop-in. To do this add a tabindex="0" on the

container, and set the focus there dynamically in JavaScript.

2. The user must not be able to tab on the rest of the page, behind the pop-in. To do this, add a

tabindex="-1" on all the tabulable elements on the rest of the page.

3. The Esc key on the keyboard must allow the user to close the pop-in.

When a pop-in is closed:

1. All the tabindex="-1" added dynamically on opening the pop-in must be deleted from the

source code to re-enable page navigation from the keyboard.

2. The focus must be re-set on the element that triggered the opening of the pop-in.

2.2.2. Tooltips

Purpose

Simulated tooltips contain informative content that is displayed when hovering over an element with

the mouse or the focus is set on an element. They can also be displayed when the element is

activated.

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 18/27

Created by Atalan – accede@atalan.ca February 2014

They are referred to as “simulated” as they do not use the title attribute included in HTML, often to

make them more visually attractive.

Basic HTML code

The basic HTML code for a simulated tooltip is very simple:

Link heading

Behaviour with JavaScript

When the user hovers with the mouse over the element, or the focus is set on the element:

1. An empty container of type or <div> is created in the DOM. This container will be

used as the tooltip.

2. The attribute value for aria-label of the element is duplicated into the newly created

container.

3. CSS files are used to position and style the tooltip as required.

When the mouse-over moves off the element or the focus is lost, the container is deleted from the

DOM.

This behaviour may be applied when the element is activated. Consequently, when the element is

deactivated, the simulated tooltip is then deleted from the DOM.

Demonstration

A demo is available in the online version of this document at: http://wiki.accede-

web.com/en/notices/interfaces-riches-javascript/.

 Note

In 2012, the technique based on ARIA suggested here is not operational on all screen readers currently

on the market. The aria-label attribute should nevertheless be correctly interpreted in the near

future.

While waiting for improved compatibility, the following solutions are available:

 Consider that the content proposed in the simulated tooltips is secondary (because it is

accessible by other methods, for example) and implement this technique from now on.

 Consider that the content proposed in simulated tooltips is essential, and prioritise other

techniques, such as, for example, adopting the recommendations for pop-in windows, which

can easily be adapted for simulated tooltips.

 Warning

Without JavaScript, the proposed content in the tooltip will not be accessible for those who do not use

screen readers.

You need to make sure that users can access this content, (for example, by including the content on the

target page of the link), or show the content on the initial page, in the event that JavaScript is

deactivated.

http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/
http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 19/27

Created by Atalan – accede@atalan.ca February 2014

2.3. Forms

2.3.1. Simulated checkboxes

Purpose

Simulated checkboxes are said to be “simulated” because they do not use the default form elements

in HTML, namely the <input type=”checkbox”/> fields. They are often used because they are

more visually attractive.

Basic HTML code

The basic HTML code uses standard checkboxes:

<form action="index.html" method="post">

 <h2 id="question">Which sports do you play?</h2>

 <ul id="answers">

 <li class="choice">

 <label for="golf">

 <input type="checkbox" name="golf" id="golf" />

 Golf

 </label>

 <li class="choice">

 <label for="polo">

 <input type="checkbox" name="polo" id="polo" />

 Polo

 </label>

 <li class="choice">

 <label for="tennis">

 <input type="checkbox" name="tennis" id="tennis" />

 Tennis

 </label>

 <input type="submit" value="Submit information" />

</form>

Without JavaScript, a standard form is provided to the user.

Behaviour with JavaScript

With JavaScript, the behaviour of simulated checkboxes must be the same as those of standard

checkboxes.

The scripts must handle the following points:

 The <label> elements and their content are replaced by the text that was initially within the

<input type=“checkbox” /> tags.

 An image that represents an unchecked checkbox is added before each label. The technical

characteristics of this this image are as follows:

 An aria-hidden="true" attribute is applied to the image to hide it from users with

screen readers.

 The alt attribute associated with the image describes the status of the checkbox;

for example alt="Unchecked: ".

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 20/27

Created by Atalan – accede@atalan.ca February 2014

 The role="group" attribute is applied to the container of the checkboxes. In the example, the

 tag is used.

 The role=”checkbox” attribute is applied to each of the checkboxes. In the example, the

 tag is used.

 The aria-checked="false" attribute is applied to each of the checkboxes by default. This

attribute value then changes dynamically to true when the checkbox is selected and false

when it is not.

 The checkboxes may be selected either by clicking on them, or by using the space key when

the focus is set on the checkbox.

 The attribute value tabindex="0" is applied to each of the simulated checkboxes so that they

can receive the focus.

 Lastly, if the checkboxes are preceded by a question, instruction, or any important indication

for understanding how to use them, the aria-labelledby attribute is applied to the container

of the checkboxes. The value of this attribute is retrieved from the id associated with the

question, instruction, etc.

The resulting code in JavaScript is as follows:

<form method="post" action="index.html">

 <h2 id="question">Which sports do you play?</h2>

 <ul id="answers" role="group" aria-labelledby="question">

 <li class="choice" role="checkbox" aria-checked="false"

tabindex="0">

 <img aria-hidden="true" src="images/checkbox-empty.png"

alt="unchecked: ">

 Golf

 <li class="choice" role="checkbox" aria-checked="false"

tabindex="0">

 <img aria-hidden="true" src="images/checkbox-empty.png"

alt="Unchecked : ">

 Polo

 <li class="choice" role="checkbox" aria-checked="false"

tabindex="0">

 <img aria-hidden="true" src="images/checkbox-empty.png"

alt="Unchecked : ">

 Tennis

 <input type="submit" value="Submit information">

</form>

Demonstration

A demo is available in the online version of this document at: http://wiki.accede-

web.com/en/notices/interfaces-riches-javascript/.

http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/
http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 21/27

Created by Atalan – accede@atalan.ca February 2014

2.3.2. Simulated radio buttons

Purpose

“Simulated” radio buttons do not use the standard HTML form elements for radio buttons, namely the

<input type="radio" /> fields. Simulated radio buttons are often used because they are more

visually attractive.

Unlike checkboxes that permit multiple selections, only one radio button can be selected in a group of

radio buttons.

Basic HTML code

The basic HTML code uses standard radio buttons:

<form action="index.html" method="post">

 <h2 id="question">Which colour was Henri IV’s white horse?</h2>

 <ul id="answers">

 <li class="choice">

 <label for="yellow">

 <input type="radio" name="henri-iv-horse-colour"

id="yellow" />

 Yellow

 </label>

 <li class="choice">

 <label for="Green">

 <input type="radio" name="henri-iv-horse-colour" id="green"

/>

 Green

 </label>

 <li class="choice">

 <label for="white">

 <input type="radio" name="henri-iv-horse-colour "

id="white" />

 White

 </label>

 <input type="submit" value="Submit information" />

</form>

Without JavaScript, a standard form is shown to the user.

Behaviour with JavaScript

With JavaScript, the behaviour of the simulated radio buttons must be the same as for standard radio

buttons.

The scripts must handle the following points:

 The <label> elements and their content are replaced by the text that was initially in the

<input type="radio" /> tag.

 An image that represents an unselected radio button is added before each label. This image

includes the following technical features:

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 22/27

Created by Atalan – accede@atalan.ca February 2014

 The attribute value aria-hidden="true" is applied to the image to hide it from

users of screen readers.

 The alt attribute of the image describes the status of the radio button; for example,

alt=”not selected “.

 The role="radiogroup" attribute is applied to the container of the radio buttons. In the

example, the tag is used.

 The role="radio" attribute is applied to each of the radio buttons. In the example, tags

are used.

 The aria-checked="false" is applied to each of the radio buttons by default. This attribute

value then changes dynamically to true when the radio button is selected and false when it

is not.

 The radio buttons can be selected either by clicking on them or by using the space key when

the focus is set on the radio button.

 By default, the tabindex="0" attribute is applied to the first and last radio buttons in the

group, so that the user can set the focus either at the start or the end of the group of radio

buttons. The tabindex="-1" attribute is applied to the other radio buttons in order to prevent

access from the keyboard by default.

 As soon as a radio button is selected, the tabindex attribute of this button is set to 0 while the

value for tabindex is set at -1 for the other buttons in the group.

 When the focus is positioned on one of the radio buttons:

 Pressing on the Up arrow or Left arrow key moves the focus to the previous

button, and selects it. If the focus was set on the first button in the group, then the

last button in the group is selected.

 Pressing on the Down arrow or Right arrow moves the focus to the next radio

button, and selects it. If the focus was set on the last button in the group, then the

first button in the group is selected.

 Finally, if the checkboxes are preceded by a question, instruction, or important indication for

understanding the meaning of the checkboxes, the aria-labelledby attribute is applied to

the container of the checkboxes. The value of this attribute is retrieved from the id associated

with the question, instruction, etc.

The resulting code in JavaScript is as follows:

<form method="post" action="index.html">

 <h2 id="question">Which colour was Henri IV’s horse?</h2>

 <ul id="answers" role="radiogroup" aria-labelledby="question">

 <li class="choice" role="radio" aria-checked="false" tabindex="0">

 <img aria-hidden="true" src="images/unselected-radio-

button.png" alt=" Not selected: ">

 Yellow

 <li class="choice" role="radio" aria-checked="false" tabindex="-1">

 <img aria-hidden="true" src="images/unselected-radio-

button.png" alt="Not selected: ">

 Green

 <li class="choice" role="radio" aria-checked="false" tabindex="0">

 <img aria-hidden="true" src="images/unselected-radio-

button.png" alt=" Not selected: ">

 White

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 23/27

Created by Atalan – accede@atalan.ca February 2014

 <input type="submit" value="Submit information">

</form>

Demonstration

A demo is available in the online version of this document at http://wiki.accede-

web.com/en/notices/interfaces-riches-javascript/.

2.3.3. Simulated drop-down lists

Purpose

Drop-down lists referred to as “simulated” only use some of the default HTML form elements for drop-

down lists, namely, the <select> fields and <option> tags. Simulated drop-down lists make use of a

useful feature of CSS that makes it possible to customize a part of lists obtained.

Basic HTML code

The basic HTML code for a standard drop-down list:

<form action="index.html" method="post">

 <label for="eye-colour">

 Which colour are your eyes?

 <select name="eye-colour" id="eye-colour">

 <option value="black">Black</option>

 <option value="blue">Blue</option>

 <option value="green">Green</option>

 <option value="brown">Brown</option>

 <option value="other">Other</option>

 </select>

 </label>

 <input type="submit" value="Submit information" />

</form>

Without JavaScript, a standard form is shown to the user.

Behaviour with JavaScript

With JavaScript, the behaviour of simulated drop-down lists must be the same as those of standard

drop-down lists.

To implement the essentials of this method, you need to respect the following steps:

1. The CSS property opacity: 0; is applied to the <select> tag when JavaScript is active. This

property makes the list invisible by default, but the options are displayed when you click

<select>. The list stays in the same place on the screen, since it is only made invisible by

changing the opacity.

 Note

There are other more advanced techniques to simulate drop-down lists in their entirety, which give you

the tools to fine tune the appearance of choice lists. These techniques are much more complicated than

the solution proposed here, and are not discussed in this document.

http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/
http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 24/27

Created by Atalan – accede@atalan.ca February 2014

2. An empty container is created in the DOM, just after the <select>. For example, a

can be used. This container is then dynamically populated in JavaScript, with the current value

of the drop-down list. The script is called each time the status of the drop-down list changes.

3. The invisible <select> is positioned in the CSS just above the created container, so that

when you click on the container it triggers the opening of the drop-down list.

Going into more detail, the scripts must handle the following points:

 The CSS property opacity: 0; is applied to the <select> tags.

 An empty container is added in the DOM just after the <select>. In our example, a is

used.

 The aria-hidden="true" attribute is applied to the container, in order to hide it from users of

screen readers, who otherwise would have access to the invisible <select>.

 The container cannot receive the focus, but a class is added to the container with the class

attribute as soon as the focus is positioned on the <select>. This class is deleted as soon as

the <select> loses the focus. The CSS uses this class to simulate visually that the focus has

been set on the container.

 An image is included in the container using the tag (with the alt attribute left empty)

to indicate that it is a drop-down list. A good accessibility practice is to use a down arrow for

this element.

 As soon as the status of the list changes, the value of the container is updated. The container

retrieves the value of the option selected in the drop-down list.

 The script that populates the container is always called once by default, when the page is

loaded.

The resulting code in JavaScript is as follows:

<form method="post" action="index.html">

 <label for="eye-colour">

 Which colour are your eyes ?

 <div class="list-container">

 <select id="eye-colour" name="eye-colour">

 <option value="black">Black</option>

 <option value="blue">Blue</option>

 <option value="green">Green</option>

 <option value="brown">Brown</option>

 <option value="other">Other</option>

 </select>

 Black<img

alt="" src="images/arrow.png">

 </div>

 </label>

 <input type="submit" value="Submit information">

</form>

Demonstration

A demonstration is available with the online version of this document at http://wiki.accede-

web.com/en/notices/interfaces-riches-javascript/.

http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/
http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 25/27

Created by Atalan – accede@atalan.ca February 2014

2.3.4. Sliders

Purpose

Sliders are form fields that let the user select a specific value within a range of predefined values.

Normally, they are shown as a slider that can be moved along an axis, between the minimal value and

a second value which is the maximum value.

Sometimes, you can move the slider anywhere on the scale; other times you have to choose one of

the predefined values on the scale.

They are said to be “simulated” when they do not use the default form elements included in HTML,

namely the <input type=“range” /> fields. They are often used because they are more attractive.

Basic HTML code

The basic HTML code uses a standard HTML5 slider:

<form action="index.html" method="post">

 <label for="sleep-quality" id="sleep-quality-label">

 Are you satisfied with the quality of your sleep?

 (whole number, from 1 for “Very dissatisfied” to 5 for “Very

satisfied")

 </label>

 <input type="range" id="sleep-quality" name="sleep-quality" step="1"

value="3" min="1" max="5" />

 <input type="submit" value="Submit information" />

</form>

Without JavaScript, a standard form is shown to the user.

Behaviour with JavaScript

With JavaScript, the behaviour of simulated sliders must the same as those of standard sliders.

Essentially, the method consists of the following steps:

1. The standard slider is hidden in JavaScript.

2. An empty container is created in the DOM, in the place of the initial slider. It will contain the

other slider elements. When it has been styled with CSS, it will symbolize the axis of the

slider.

3. A second empty element is created in the DOM as a child of the previous element. When

styled in CSS, it will be used as the slider.

4. JavaScript is then used to add ARIA roles and manage the behaviour of the simulated slider.

Going into more detail, the scripts must handle the following points:

 The CSS property display: none; is applied to the <input type=“range” /> tags.

 An empty container is added in the DOM just after the <input type=“range” />. In the

example, a <div> is used.

 Warning

It is very important to indicate the format of data required from the user

If HTML5 is not supported by the user’s browser, and if JavaScript is not activated, a text field will be

displayed by default. Without instructions, the user will not know the range of authorized values.

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 26/27

Created by Atalan – accede@atalan.ca February 2014

 An empty element is added in the DOM within the newly created container. In the example, a

 is used. This is the slider.

 If the slider is not tabulable by default, the attribute value tabindex="0" is applied to it.

 The attribute value role="slider" is applied to the slider.

 The attribute aria-labelledby is applied to the slider. The value of this attribute is retrieved

from the id attribute of the label corresponding to the slider.

 The attribute value aria-valuemin is applied to the slider. This attribute value corresponds to

the minimum value authorized for the slider.

 The attribute value aria-valuemax is applied to the slider. This attribute value corresponds to

the maximum value authorized for the slider.

 The attribute value aria-valuenow is applied to the slider. This attribute value corresponds to

the current value of the slider. This attribute value is updated whenever the slider changes

position.

 If required, the attribute aria-valuetext is applied to the slider. This attribute value

corresponds to the current value of the cursor, but in a format adapted to the internet user. In

our example, this attribute could, for example, have the value aria-valuetext="Very

satisfied" when the aria-valuenow="5". As it is more easily understood, it is the first

value, if available, that will be shown to users of assistive devices. This attribute value is

updated whenever the slider changes position.

 The slider cannot be positioned before the minimal value, or after the maximal value, on the

axis.

 If steps are defined, the slider position must respect them. For example, if each step has a

value of 1 unit, and the starting position is 10, it must not be possible to obtain a value that is

not a whole number by using the slider.

 The slider can be moved along the axis, by dragging it with the mouse, or by dragging it with

the finger.

 The slider can also be moved with the keyboard. When the focus is set on the slider:

 Pressing the keys Right arrow or Up arrow increases the value of the slider by

one step.

 Pressing the Left arrow or Down arrow decreases the value of the slider by one

step.

 Pressing the Home key moves the slider to the minimal value of the slider.

 Pressing the End key moves the slider to the maximal value.

 Pressing the Page up key increases the value of the slider, by an arbitrary value,

but by more than one step.

 Pressing the Page down key decreases the value of the slider, by an arbitrary value

more than one step, and equal to the amount by pressing on the Page up key.

The resulting code in JavaScript is as follows:

<form action="index.html" method="post">

 <label for="Sleep-quality" id="sleep-quality-label">

 Are you satisfied with the quality of your sleep?

 (Whole number, from 1 for “Very dissatisfied” to 5 for “Very

satisfied")

 </label>

 <input style="display: none;" type="range" id="sleep-quality"

name="sleep-quality" step="1" value="3" min="1" max="5" />

 <div id="slider-container">

 <span id="slider-cursor" role="slider" tabindex="0" aria-

labelledby="sleep-quality-label" aria-valuemin="1" aria-valuemax="5" aria-

valuenow="5" aria-valuetext="Very satisfied">

AcceDe Web – www.accede-web.com
Accessibility guidelines for rich interfaces and JavaScript

(Use cases to comply with France’s accessibility guidelines)

Page 27/27

Created by Atalan – accede@atalan.ca February 2014

 </div>

 <input type="submit" value="Submit information" />

</form>

Demonstration

A demo is available in the online version of this document at: http://wiki.accede-

web.com/en/notices/interfaces-riches-javascript/.

http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/
http://wiki.accede-web.com/en/notices/interfaces-riches-javascript/

